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THE DETERMINATION OF THE IMAGINARY ABELIAN 
NUMBER FIELDS WITH CLASS NUMBER ONE 

KEN YAMAMURA 

ABSTRACT. In this paper, we determine all the imaginary abelian number fields 
with class number one. There exist exactly 172 imaginary abelian number fields 
with class number one. The maximal conductor of these fields is 10921 = 67 > 
163, which is the conductor of the biquadratic number field Q(vC-6, 1-63) . 

1. INTRODUCTION 

Uchida proved that there exist only finitely many imaginary abelian number 
fields with class number one [28], and gave the value 2 x 1010 as an upper 
bound for the conductors of such fields [29]. Several authors determined such 
fields of some types, but not all of them have been determined yet. (Masley de- 
termined the cyclotomic number fields with class number one [21], and Uchida 
determined such fields having a power-of-two degree [30].)1 In this paper, we 
shall determine all the imaginary abelian number fields with class number one. 

Theorem. There exist exactly 172 imaginary abelian number fields with class 
number one as given in the table at the end of the paper. Among them, 29 fields 
are cyclotomic, 49 fields are cyclic, and 88 fields are maximal with respect to 
inclusion. The maximal conductor of these fields is 10921 = 67 *163, which is 
the conductor of the biquadratic number field Q(xP-6, -163). 

We note that among the 172 fields, at least 132 fields (at least 155 fields 
if the Generalized Riemann Hypothesis is true) do not have any nontrivial 
unramified extension. (We describe the details in the Appendix.) One of the 
main motivations for this work is to construct many fields with this property. 

We now sketch the method of proof. The basic idea is due to Uchida. (See 
[29, 30].) Throughout this paper, let K be an imaginary abelian number field 
with class number h(K). When h(K) = 1, the genus number2 of K is one, 
which is equivalent to saying that the group X of Dirichlet characters associated 
with K is a direct product of subgroups generated by a character of prime power 
conductor: 

X = (XI) X X (r), 
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where the conductor fx, of each Xi is a prime power. (In the following, we 
shall take Xi so that the number r of them is minimal (for details, see ?3).) 
The key idea which facilitates the determination is: 

(*) For any subfield F of K with genus number one, h(F) divides h(K) . 

Because of this, we need consider only K with genus number one such that 

(#) any (proper) subfield with genus number one has class number one. 

Among such K, we first determine K with h - (K) = 1 , and then check whether 
or not h+(K) = 1 . Here, h-(K) (resp. h+(K)) denotes the relative class 
number of K (resp. the class number of the maximal real subfield K+ of K) . 
(h(K) = h-(K)h+(K).) By (*), in most cases we can immediately restrict K 
to be considered by using data on fields with smaller character group. Thus, it 
is reasonable to start with small character group. Let L be the subfield of K 
corresponding to the 2-Sylow subgroup of X. Then we easily see that the genus 
number of L is one. Therefore, if h (K) = 1, then L is also an imaginary 
abelian number field with class number one, which is noted by Uchida [30]. 
Since K is imaginary, at least one Xi is odd. We may, and shall, always take 
Xi to be an odd generator of minimal order. We first treat the case where 
the conductor of K is a power of a prime number p. In this case, since the 
possibilities of L are known, the possibilities of the values of p are known, 
and the determination is easy. Next, we treat the case where r = 2, and ordXl 
is a power of two and ordX2 is a power of two or an odd prime. In this case, 
we need the help of a computer for the calculation of relative class numbers of 
many fields. The other cases are easily treated by using the data in the above 
two basic cases. (For details, see ?3) 

In order to reduce the amount of computer calculation, we need a good lower 
bound for h-(K). This problem is reduced to that of getting a good upper 
bound for JL(1, x)l for nontrivial even Dirichlet characters X E X by using 
Uchida's estimation for h -(K) ([30, Proposition 1]) and several results on real 
zeros of the Dedekind zeta function (Low [15], Rosser [26] and Chowla [2]). 
Examining Moser and Payan's proof in [22, ?3], we get 

Proposition. Let X be a primitive nontrivial even Dirichiet character of conductor 
f. Then 

JL(l, %)l < 2 logf + Y -2 

where y is the Euler constant. 

Now we describe a proof of Proposition. Moser and Payan proved it in [22] 
in the case where f is a prime number. But their proof does not depend on the 
primeness of f. (Cf. Hua's proof of a weaker result for quadratic characters 
[9].) There is the restriction f > 100 in [22], and the proof contains slight 
mistakes. Correcting them, f > 100 can be read as f > 30. Calculating 
JL(1, x)l approximately when f < 30, we conclude that we can remove also 
the restriction on the size of f. 

This Proposition enables us to execute all the calculations on the personal 
computer NEC PC-9801. 
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The largest part of the check h+(K) = 1 is done by using results of Masley 
[20] and Maki [16]. 

2. LOWER ESTIMATE FOR h-(K) 

As described in the Introduction, we use a computer for the calculation of 
h-(K) for many K. In this section we describe a lower estimate for h-(K). 
The analytic relative class number formula is 

h-(K) QKWK DK L(I 
(27i)n/2 DK+ Xod 

where 

QK = [EK: WKEK+]: the unit index, 
EK: the group of units in K, 
WK: the group of roots of unity in K, 
WK = #WK: the number of roots of unity in K. 
n = [K: Q]: the degree of K, 

DK: the absolute value of the discriminant of K, 

and x runs over all odd characters in X. For simplicity, we denote by Li (s) 
(resp. Lo(s)) the product of L-functions for all odd (resp. nontrivial even) 
characters in X. Uchida gave a lower bound for LI (1) by using the values of 
Lo(s): 

Proposition Ul (Uchida [30, Proposition 1]). Let K be an imaginary abelian 
number field of degree ? 4 such that L1 (s) has no exceptional zero. Then 

L1 (1)- ? 9.3Lo(so) log DK, 

or 
L1(1)-1 ? 9.3Lo(l)logDK, 

according as the Dedekind zeta function CK(S) of K has an exceptional zero or 
not. Here, 

So= 1 + 1.2log DK' 

and a zero p of SK(S) is called exceptional if it satisfies the inequality 

I 
> 0.85logDK.3 

We note that the inequality 

0.85logDK > 2R3 1 

always holds, where p runs over all zeros of CK(s) such that 0 < Rp < 1 (see 
[30, p.153]). If p is a zero of CK(S), then its complex conjugate p is also a 

3The definition of exceptional zero in [30] should be rewritten like this. 
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zero of CK(S). Therefore, if CK(s) has an exceptional zero, then it is a real 
simple zero. Thus, an exceptional zero is a real zero p of CK(S) such that 

35 
p> 1- 102 logDK- 

Any positive real simple zero of CK(S) is a zero of L(s, x) associated with 
a quadratic subfield of K. For, if x is a nontrivial nonquadratic character 
belonging to X, then Z belongs to X and x $ , and therefore, we have the 
factorization 

SK(S) = C(S) J L(s, X) J L(s, X)L(s, X) 
X: quadratic {x ,X} 

x: nonquadratic 

for s > 0, because L(s, %) = L(s, x) for real s. Thus, the main difficulty 
of the (class number) problem lies with quadratic number fields. (See also [8, 
27].) This work owes much to Uchida's results. But, Uchida needed Baker and 
Stark's results (the determination of the imaginary quadratic number fields with 
class number one and two). 

For real zeros of L(s, x) associated with a quadratic field, the following is 
known: 

Theorem R (Rosser [26]). Let X be a nontrivial real Dirichlet character of con- 
ductor f . If f ? 227, then L(s, x) has no positive real zero. 

Theorem L (Low [1 5]). Let x be an odd quadratic Dirichlet character of con- 
ductor f. If f < 593000, then L(s, x) > O for s > 0. 

It has long been conjectured that for any quadratic character x, one has 
L(s, x) > 0 for s > 0. But this conjecture has not yet been settled. Chowla 
gave a necessary condition for L(s, x) > 0 (s > 0), which we can easily check 
by a computer for some x of small conductors: 

Theorem C (Chowla [2]). Let x be a quadratic Dirichlet character and Sm(X) 
the mth character sum: 

x x 

SI(x) = EZ(n), Sm(x) = ZSm-i(n) (m > 2). 
n=I n=I 

If there exists a positive integer m such that Sm(X) ? 0 for all x > 1, then 
L(s, x) > 0 for s > O. 

In addition to Theorems R and L, using this,4 we checked by a computer 
that for any imaginary abelian number field L of power-of-two degree with 
class number one, neither LI (s) nor CL(s) has an exceptional zero. Therefore, 
for all K we consider LI(1)- < 9.3LO(l)logDK by Proposition Ul. Thus, 

4Heilbronn [7] proved there exist infinitely many quadratic characters X such that for any 
m > 1, Sm(x) < 0 for some x. For this reason, some modified versions of Theorem C were 
considered by several authors (see [26, 3, 4, 5]). But for our check, Theorem C is sufficient. 
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we can estimate h-(K) from below by estimating JL(1, x)j from above for 
nontrivial even X E X. Therefore, by the conductor-discriminant formula and 
Proposition, we have 

QKWK fIfx 
X: odd 

h-(K) > 
(27Q)n/29.3{ H (Ilogfx + Y )}(E ogfx) 

X :even X 
x#l 

where fx is the conductor of X .5 Before the actual calculation of h-(K), we 
use this to decide the amount of calculation. For actual calculation, we use the 
arithmetic formula 

h (K)= QKWK rL (-9Bl,x), Bl,x =J A X(a)a, 
X: odd 

2x 
a= 

and the formula for the absolute norm of -2B1x for X whose conductor is 
not a prime power, given in [6, ?28]. 

For the unit index QK, Uchida gave a simple criterion: 

Proposition U2 (Uchida [29, Proposition 3]). Let K be an imaginary abelian 
number field with genus number one so that K is the composite field K1 ... Kt 
of its subfields Ki ofprime power conductors which are pairwise relatively prime. 
Then the unit index QK = 1 if and only if exactly one Ki is imaginary. 

3. DETERMINATION 

In this section, we determine all the imaginary number fields with class num- 
ber one. Let f be the conductor of K and t the number of prime divisors 
of f . We shall take generators Xi of X = Gal(K/Q)^ so that the number r 
of them is minimal. For each prime divisor p of f, let Xp be the subgroup 
of X consisting of characters of p-power conductors. For any odd p, Xp is 
cyclic. Then, we take a generator of Xp as Xi. On the other hand, X2 is 
cyclic or a direct product of its two cyclic subgroups. When f is even, we 
take also generator(s) of X2 as Xi; if X2 is not cyclic, i.e., if K contains 
Q(g2m) = Q(VZT)Q(cos(7/2m-1)) for some m > 3, then for simplicity, we 
take the character associated with Q(vZT) as Xi , and a generator of the char- 
acter group associated with Q(cos(7r/2m-1)) as X2. (Then by Proposition U2, 
QK = 1 if and only if exactly one of Xi is odd.) Thus, r = t+ + or t, according 
as K contains Q(Q2m) for some m ? 3 or not. 

Now, we explain under which rule we examine all possible cases. First, we 
note that the character group associated with any subfield of K with genus 
number one is of the form 

(X41) X ... X (Xer). 

As described in the Introduction, we shall always take X, to be an odd generator 

5Recently, Louboutin obtained sharper lower bounds for h- (K) ([13, 14]), and if we had used 
them, we could have greatly reduced the amount of calculation in ?3. 
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of minimal order, and by (*), in most cases, we can immediately restrict K 
to be considered by using data on fields with smaller character group. Indeed, 
when r ? 3, the subfields of K corresponding to 

(XI) X .. X (Xr-i) and (XI) x ...x (Xr-2) X (Xr) 

are imaginary abelian number fields with class number one by (#). Hence, the 
values of fx, are restricted by the data for r - 1 . In particular, if for some r 
any K with genus number one has class number greater than one, then so does 
any such K for r + 1 . Therefore, it is reasonable to examine all possible cases 
according to the growth of r. Since r = t + 1 or t, we shall examine them 
according to the growth of t, and for each t first treat the case r = t and then 
the case r = t + 1 . From the upper bound for conductors given by Uchida, we 
can get an upper bound for t, which is too large to examine all possible cases: 

f < 2 x 1010 22 x rlPi < 2 x 1010 (pi : the ith prime) 
i=2 

=t < 0 (==- r < 11). 

However, since the possibilities decrease fast according to the growth of r, it 
is expected that r does not become so large. For each pair (t, r), we first treat 
the cases where each ordyi is a prime (power) and then the other cases. Thus, 
the two basic cases are: 

(i) the case t= l, 

and 

(ii) the case t = r = 2, and ordX1 is a power of two and ordX2 is a power 
of two or an odd prime. 

(Note that since we take XI odd, 2 always divides ordX I.) Each case is divided 
into many subcases. Therefore, we must be careful. We divide each case into 
subcases according to the type of some subfield. We take as this subfield the 
maximal subfield of power-of-two degree L in the two basic cases, and the 
subfield F corresponding to (X4, Xb) for some a, b in the other cases. 

Now, we determine the fields. 
(i) We first treat the case t = 1, i.e., f = pm (p : a prime). Since the cases 

where n = [K : Q] is a power of two have been treated by Uchida, it suffices to 
consi4er the cases where n is not a power of two and p is odd. Then r = 1 and 
K is cyclic. As we described in the Introduction, the possibilities of the values 
of p are known by Uchida's result. In this case, for each p, we determine the 
fields as follows. Since any imaginary cyclic field of conductor pm+l has an 
imaginary subfield of conductor ptm, if h(K) > 1 for all imaginary cyclic fields 
K of conductor pm, then also h(K) > 1 for all such fields K of conductor 
pm+1 by (*). Therefore, we first check whether or not h(K) = 1 for all fields 
K of conductor p. If there exists a field with h(K) = 1 of conductor pm, 
then we check whether or not h- (K) = 1 for all the fields K of conductor 
pm+I containing that field. Suppose 2k 11 n. Then [L: Q] = 2k, and therefore 
k = 1, 2, 3, or 4 by [30] (see Table 1). 
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Assume k = 1 . Then L is one of the imaginary quadratic number fields 

Q( -d): d = 3, 7, 11, 19, 43, 67, 163. 

Therefore, p is one of the above d. 
Assume p = 3. All imaginary cyclic fields of power-of-three conductors are 

cyclotomic. Therefore, the determination has already been done in [21]. There 
exist exactly three imaginary cyclic number fields of power-of-three conductors 
with class number one, that is, Q(V"3), Q(Cq), and Q(C27) - 

Assume p = 7. We know h(Q(47)) = 1 and h(Q(449)) > 1 [21]. We also 
know h(K) = 1 for f = 72 = 49 and n = 2. 7 = 14 ([6, 20]). By the 
relative class number formula, we have h- (K) > 1 for f = 73 = 343 and 
n = 14.7 = 98. Thus, there exist exactly three imaginary cyclic fields of power- 
of-seven conductors and class number one, that is, Q(V/7), Q(C7), and the 
subfield of Q(C49) of degree 14. 

The other values of p are treated similarly. 
For the other values of k, we first get a list of possible values of p from the 

list of the imaginary cyclic number fields with class number one of degree 2k, 
and then treat each value of p similarly. 

Thus, together with Uchida's result, we get the following table. 

TABLE 1 

t r Type Degree Fields 

2* 2 3;4;7;8;1 1;19;43;67;163 
4* 4 5; 13;16;29;37;53;61 
6* 6 7;9;19;43;67 
8* 8 32;41 
10* 10 11 
12* 12 13;37;61 

1 14* 1 4 43;49 
16* 16 17 
18* 18 19;27 

__ 20* 20 25 
(2*, 2) 4 (4,8) 

2 (2*, 4) 8 (4,16) 
__ (2*, 8) 16 (4,32) 

In the table, * means the oddness (imaginarity) of a generator of the charac- 
ter group Xp . Each field is expressed as (f, I . . . r fXr) for each type (ordX , * * , 
ordyr) of X. For example, for the field expressed as (4, 32) of type (2*, 8), 
the character group is generated by the odd character of order 2 and conductor 
4 (say X4), and an even character of order 8 and conductor 32 (say V32). 

Hence, this field is the cyclotomic number field Q(V/ET, cos(27t/32)) = Q(C32) - 
We note that this field is considered as also of type (2*, 8*) by taking X4 and 
X4 132 as generators of the character group. This is so in Uchida's table in [30]. 

(ii) Next we treat the case t = r = 2 and ordXj = a power of two, ordX2 = 1 

(a power of two or an odd prime). The cases where / is a power of two have 
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been treated by Uchida. Therefore, we may assume that / is an odd prime. 
Then K is cyclic. Since [L: Q] = ordXl , from Uchida's result (see Table 1), 
ordXl = 2, 4, 8, or 16. For each ordXl , the possibilities of the values of fx1 
are known. In this case, for each fx1 , we determine the fields as follows. By the 
estimate for h -(K) obtained in the previous section (or a better estimate), we 
get a lower bound for / such that h -(K) > 1 for all f42. Then for each fixed 
fx1 and 1, we get an upper bound for fX2 for h- (K) > 1 by the same estimate. 
Then we calculate h- (K) for every fX2 (= p or 12, where p is a prime with 
p _ 1 (mod 1) and p t fx,) less than the above upper bound. Then we check 
whether or not h+(K) = 1 for K with h-(K) = 1. 

Suppose ordXl = 4. Then, since L is an imaginary cyclic quartic number 
field with class number one, from Table 1, 

fxl = 5, 13, 16, 29, 37, 53, or 61. 

Assume fx1 = 5. Then we have WK = 10, DK = (53)1 (f,j1)4, and DK+ - 

51 (fl-1)2. We also note that for the character x = (./5) associated with 

Q(vl5), 

L(1, x ) /2} 0.4304.... 

Therefore, we have 

10. 51 . fjl- 

h()~(27i)21 x 9.3 x 0.431 xc 

where 

C =(logfx2 +y- -) (log5fx2 +y- (31log5+4(l-1)logf42). 

From this, we have h -(K) > 1 for 

1 3,fX2 ' 2400; 1 5,fX2 500; 1= 7,fx2 ' 300; 

=ll,fx2? l50; 113,fx211O; 1=17,4fx2>90; 
l9 fX2 > 90; l 23, fx2 > 80; 1 = 29, fx2 > 70; 

1 > 29, for allfx2. 

For each 1 < 29, we calculate h -(K) by a computer for all fX2 less than the 
above upper bound; we find that h -(K) = 1 only for 

1 3,fx2 =7; 1=3,4f2 = 9 

For these fields, h+(K) = 1 by [20]. For the other fx, we have h-(K) > 1 
for all fX2 by computer calculation. 

The other values of ordXl are treated similarly. 
Thus, together with Uchida's result, we get the following table . 
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TABLE 2 

t r Type Degree Fields 

(2* 2) 4 (3,5);(3,8);(3,17);(3,41);(3,89);(4,5);(4,13);(4,37); 
(7,5);(7,13);(7,61);(8,5);(8,29);(1 1,8);( 11,17) 
(3,4);(3,7);(3,8);(3,11 );(3,19);(3,19);(3,43);(3,67); 
(3,163);(4,7);(4,1 1);(4,19);(4,43);(4,67);(4,163); 

(2*, 2*) 4 (7,8);(7,1 1);(7,19);(7,43);(7,163);(8,1 1);(8,19); 
(8,43);(8,67);( 11,19);(1 1,67);( 11,163);(19,67); 
(19,163);(43,67);(43,163);(67,163) 

(2* 3) 6 (3,7);(3,13);(3,3 1);(3,43);(4,7);(4,9);(4,19);(7,9); 2 2 , (7,13);(8,7);(8,13);(1 1,7) 
(2*, 4) 8 (3,16) 
2 4*) 8 (3,5);(3,16);(4,5);(4,13);(4,37);(7,5);(7,13);(8,5); 

____________ ~(8,29);(l 1,16) 
(2*, 5) 10 (3,11);(4,11) 
(2*, 8*) 16 (3,32) 
(4* 2) 8 (5,8);(5,13);(5,17);(13,5);(13,8);(16,5) 
(4*, 3) 12 (5,7);(5,9) 
(4* 4*) 16 (5,13);(5,16) 

The other cases are easily treated. We no longer need to use the estimate 
for h-(K). By the arithmetic formula and Proposition U2, we easily see that 
in some cases, h- (K) is a product of relative class numbers of two subfields, 
and therefore we immediately get the list of fields with h- (K) = 1 from the 
data on fields with smaller character group. Moreover, in some cases, for all 
fields K satisfying (#), h-(K) has been calculated already by Hasse [6] or 
Rechtenstamm [25]. But in some cases, we need to calculate h-(K) for many 
fields. 

(iii) Next, we treat the case where t = r = 2 and K $ L and ordXl is 
not a power of two or ordX2 is a composite. Suppose 2k 11 ordxl. Let 1 
be any prime divisor of ordX2. Let F be the subfield of K corresponding to 

,ordXi/12k Then F s/ankfild of withgeu (x1 , XrdX2/l) . Then F is an imaginary field of type ((2k)* 1) genus 
number one, and therefore h(F) = 1 by (#). Hence, from Table 2, k = 1 or 
2,and 1=2,3, or 5 if k= I and 1=2, or 3 if k=2. 

(a) Assume k = 1 , i.e., 2 11 ordXl . Then from Table 1, ordXl = 2, 6, 10, 14, 
or 18. 

(a) Suppose ordXl = 2. Then, since ordX2 is not a power of two, 5, 6, or 
9 divides ordX2. 

Suppose 5 1 ordX2. Then by the data on fields of type (2*, 5) and fields 
of power-of-eleven conductors, only the following two fields of type (2*, 10*) 
satisfy (#): 

(f%l 5 4%2) = (3,5 11),5 (4,5 1 1). 

These are the cyclotomic fields Q(C33) and Q(C44) which have class number 
one [21]. 

Suppose 9 1 ordX2. Let F be the subfield of K corresponding to (XI, 
XordX2/9) Then F is an imaginary field of type (2*, 9) with genus num- 
ber one. By the data on fields of type (2*, 3), F must be one of the fields 
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with (f4, fX2) = (4, 19), (4, 27), (7, 27). For these fields, by [25], h-(K) = 
19, 19, 163, respectively. Hence, we always have h(K) > 1. 

Suppose 6 1 ordX2 and 5, 9 t ordX2, i.e., ordX2 = 6 - 2m for some m > 0. 
First, we assume that X2 is an even character of order 6. Then by the data 
on fields of types (2*, 2) and (2*, 3), only the field with (fr, ff2) = (7, 13) 
satisfies (#). But for this field, h-(K) = 7 by [6]. Hence, when m > 0, we 
always have h (K) > 1. Thus, we may assume that X2 is an odd character of 
order 6. Let F1 (resp. F2) be the subfield of K corresponding to (XI, X22) 
(resp. (X2)). Then it is easily seen that h-(K) = h-(F1)h-(F2). Therefore, by 
the data on sextic fields, h -(K) = 1 exactly for 

(fxl , f2) = (3, 7), (3, 43), (4, 7), (4, 9), (4, 19), (7, 9), (8, 7), (11, 7). 
For all these fields, h+(K) = 1: The first, third, and fourth fields are the 
cyclotomic fields Q(201), Q(C28), and Q(C36), which have class number one 
[21]; for the second field this follows by [16], and for the others by [20]. 

Thus, if ordXl = 2 and ordX2 is composite and not a power of two, h(K) = 
1 exactly for the above ten fields. 

(,f) Suppose ordXl = 6. Then we may assume X2 is even or ordX2 is not 
a power of two > 8. 

Suppose X2 is an even character of order two. Therefore, by the data on 
fields of type (2*, 2), only the following eight fields satisfy (#): 

(fxl , f2)= (7, 5), (7, 13), (7, 61), (9, 5), (9, 8), (9, 17), (9, 41), (9, 89). 
For these fields, by computer calculation, 

h-(K) = 1, 4, 9, 1, 1, 4, 19, 28, 

respectively. For the above three fields with h- (K) = 1, we get h+(K) = 1 by 
[20]. From this and the data on fields of type (2*, 5), if there exists another 
field with h(K) = 1, ordXI = 6, and 2 1 ordX2, then it contains the field with 
(fxl f 42) = (9, 16) and ordX2 = 4. But for this field, h-(K) = 13 by [25]. 
Therefore, such a field does not exist. 

Suppose ordX2 = 3. Then by the data on fields of type (2*, 3), only the 
following six fields satisfy (#): 

(f%l , f2) = (7, 9), (7, 13), (9, 7), (9, 13), (9, 31), (9, 43). 
For these fields, by [25], 

h-(K) = 7, 13, 1, 7, 91, 247, 

respectively. For the above field with h - (K) = 1, we have h+ (K) = 1 by [11]. 
Since there exists no field of type (2*, 7) with h -(K) = 1, among the fields 
with ordXl = 6, and 3 1 ordX2, only this field has class number one. 

Suppose ordX2 = 5. Then by the data on fields of type (2*, 5), only the 
field with (f4, ff2) = (9, 11) satisfies (#). But for this field, h-(K) = 31 by 
[6]. Thus, there exists no field with 5 1 ordX2 and h(K) = 1 . 

(y) The cases ordv, = 10, 14, and 18 are treated similarly, and in these 
cases we always have h(K) > 1. 

(b) Assume k = 2, i.e., 4 11 ordXl . Then from Table 1, ordvI = 4, 12, or 
20. 

(a) Suppose ordxl = 4. Then, from Table 2, 3 1 ordX2. 
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Suppose ordX2 = 6. Then by the data on fields of type (4*, 3), only the 
following two fields satisfy (#): 

(fX I 4x2)(5, 7), (5 ,9). 

These two fields are the cyclotomic fields Q(C35) and Q(C45), which have class 
number one [20]. 

Suppose ordX2 = 9. Then by the data on fields of type (4*, 3), only the 
field with (f4, f42) = (5, 27) satisfies (#). But for this field, h-(K) = 2053 
by [25]. Thus, since h-(K) > 1 for any field K of type (4*, 7), if ordXl = 4, 
we have h(K) = 1 only for the above two fields. 

(,f) The cases ordXI = 12 and 20 are treated similarly, and in these cases 
we always have h(K) > 1. Thus, we get the following table. 

TABLE 3 

t r Type Degree Fields 

(2* , 6*) 12 (3,7);(3,43);(4,7);(4,9);(4,19);(7,9);(8,7);(1 1,7) 
(2*, 10*) 20 (3,11);(4,11) 

2 2 (4*, 6*) 24 (5,7);(5,9) 
(6*, 2) 12 (7,5);(9,5);(9,8) 
(6*, 3) 18 (9,7) 

(iv) Next, we treat the case where t = 2 and r = 3. Let F be the subfield 
corresponding to X2 = (Xi, X2). Then, from Table 1, F = Q(C8), Q(C16), or 
Q(432) . We consider only the cases where L $ K. We put ordX3 = q. 

(a) Assume F = Q(C8). Then both of the subfields corresponding to (XI, X3), 
(X%X2, X3) are imaginary fields of type (2*, q) with class number one, which 
are known in (ii) and (iii). Thus, we have q = 3 or 6 from Tables 2 and 3. 
When q = 3, from Table 3, only the field with fx3 = 7 satisfies (#). For this 
field, we know h-(K) = 1 by [6] and h+(K) = 1 by [20]. When q = 6, the 
subfields corresponding to (Xi, X2, x32) is the above field. Therefore, fx3 = 7. 
Hence, K = Q(456), for which we know h(K) > 1 by [21]. 

(b) Assume F = Q(416). Then the subfield corresponding to (XI, %22 X3) 
is the above field Q(C8, cos(27r/7)). Therefore, q = 3 and f43 = 7. For this 
field, h-(K) = 9 by [25]. 

(c) Similarly, if F = Q(432), we have h(K) > 1 for any X3 . 
Thus, together with Uchida's result, we get the following table. 

TABLE 4 

t r Type Degree Fields 

(2*, 2, 2) 8 (4,8,5) 
(2*, 2, 2*) 8 (4,8,3);(4,8,11) 
(2*, 2, 3) 12 (4,8,7) 

2 3 (2*, 2, 4*) 16 (4,8,5) 
(2*, 4, 2) 16 (4,16,5) 
(2*, 4, 2*) 16 (4,16,3) 
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(v) Next, we treat the case where t = r = 3. Let F be the subfield of K 
corresponding to (XI, X2) and put ordX3 = q. 

(a) Suppose that F is of type (2*, 2). The cases where q is a power of two 
have been treated by Uchida. In the other cases, from Tables 2 and 3, q = 3, 5, 
or 6. 

(a) Assume q = 3. Then by the data on fields of types (2*, 2) and (2*, 3), 
(#) is satisfied only by the fields with 

(ffl , fX2 ff3) = (3, 5, 7), (3, 5, 13), (3, 5, 31), (3, 5, 43), (3, 8, 7), 
(3, 8, 13), (3, 8, 31), (3, 8, 43), (3, 17, 7), (3, 17, 13), 
(3, 17, 31), (3, 17, 43), (3, 41, 7), (3, 41, 13), (3, 41, 31), 
(3, 41, 43), (3, 89, 7), (3, 89, 13), (3, 89, 31), (3, 89, 43), 
(4, 5, 7), (4, 5, 9), (4, 5, 19), (4, 13, 7), (4, 13, 9), 
(4, 13, 19), (4, 37, 7), (4, 37, 9), (4, 37, 19), (7, 5, 9), 
(7, 5, 13), (7, 13, 9), (7, 61, 9), (7, 61, 13), (8, 5, 7), 
(8, 5, 13), (8, 29, 7), (8, 29, 13), (11, 8, 7), (11, 17, 7). 

For these fields, by computer calculation, 

h-(K) = 1, 4, 63, 61, 3, 13, 12, 28, 13, 27, 13, 27, 13, 27, 28, 37, 63, 
84, 91, 91, 196, 175, 3, 7, 7, 12, 13, 63, 31, 52, 84, 9, 12, 4, 
211, 181, 9, 12, 52, 9, 57, 57, 

respectively. For the first field, h+(K) = 1 by [20]. 
(/l) Assume q = 5. Then by the data on fields of types (2*, 2) and (2*, 5), 

only the following eight fields satisfy (#): 

(ffl , ff2 ff3) = (3, 5, 11), (3, 8, 11), (3, 17, 11), (3, 41, 11), (3, 89, 11), 
(4,95,9 11),9(4,9 13,9 11),9(4,~37, 1I1). 

For these fields, by computer calculation, 

h-(K) = 11, 25, 355, 1705, 15856, 31, 155, 3971, 

respectively. 
(y) Assume q = 6. Then the subfield of K corresponding to (XI, X2, X3) 

must be the field obtained when q = 3. Therefore, (f, I f2 A fX3) = (3, 5, 7) . 
For this field, h-(K) = 1 by [25] and h+(K) = 1 by [11]. 

(b) Suppose that F is of type (2*, 2*). The cases where q is a power of 
two have been treated by Uchida. In the other cases, from Tables 2 and 3, and 
the data on fields of type (2*, 2*, 2*) in [28] (see Table 5 below), q = 3, 5, 6, 
or 10. Let E be the subfield of K corresponding to (XI, X3) . Then, when X3 
is even, it is easily seen that h-(K) = h-(F)h-(E). Therefore, we can get the 
fields with h -(K) = 1 immediately from Table 2. 

(a) Assume q = 3. Then h-(K) = 1 exactly for 

(ffl , fX2 9 f3) = (3, 4, 7), (3, 7, 13), (3, 8, 7), (3, 8, 13), (3, 11, 7), 
(4, 7, 9), (4, 11, 7), (7, 8, 13), (8, 11, 7). 

For all these fields except the last field for which h+(K) = 3, we have h+(K) = 1 
by [16]. 
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(f) Assume q = 5. Then h-(K) = 1 only for (fx f;x, f,x) = (3, 4, 11). 
For this field, h+(K) = 1 by [11]. 

(y) Assume q = 6. Then X3 is odd. By the data on fields of types (2*, 6*) 
and (2*, 2*, 2*), only the following three fields satisfy (#): 

(fxl S f2l fx3) = (3, 4, 7), (3, 8, 7), (4, 7, 9). 

The first field is the cyclotomic field Q(C84), which has class number one [21]. 
For the second and third fields, by [25] h- (K) = 7, 71344, respectively. 

(a) Assume q = 10. Then the subfield of K corresponding to (XI, X2, x ) 
must be the field obtained when q = 5. Therefore, (fx,, fx,2 fx3) = (3, 4, 11). 
But this field is the cyclotomic field Q(4132) which has class number greater than 
one [21]. 

(c) Suppose that F is of type (2*, 3) and q ? 3. Then from Tables 2 and 
3, q=3,4,5, or 6. 

(a) Assume q = 3. Then by the data on fields of type (2*, 3), only the 
following eleven fields satisfy (#): 

(f41 , fX2, ff3) = (3 7, 13), (3, 7, 31), (3, 7, 43), (3, 13, 31), (3, 13, 43), 
(3, 31, 43), (4, 7, 9), (4, 7, 19), (4, 9, 19), (7, 9, 13), 

(8, 7, 13). 

For these fields, by computer calculation, 

h-(K) = 36, 324, 1008, 2736, 5292, 3024, 28, 196, 592, 2128, 1072, 

respectively. 
(fi) Assume q = 4. Let F1 (resp. F2) be the subfield of K correspond- 

ing to (XI, %3, X2) (resp. (X3, X2)). Then it is easily seen that h-(K) = 
h-(F1)h-(F2). Therefore, by the data on fields of types (2*, 2, 3) and (4*, 3), 
h-(K) = 1 only for 

(f%l S 4x2 t%43) = (3, 7,~ 5). 

For this field, h+(K) = 1 by [11]. 
(y) Assume q = 5. Then by the data on fields of types (2*, 3) and (2*, 5), 

only the following seven fields satisfy (#): 

(ffl ' f42, ff3) = (3, 7, 11), (3, 13, 11), (3, 31, 11), (3, 43, 11), (4, 7, 11), 
(4, 9, 11), (4, 19, 11). 

For these fields, by computer calculation, 

h-(K) = 976, 17701, 515401, 4733721, 2896, 19231, 449296, 

respectively. 
(6) Assume q = 6. Then by the data on fields of type (2*, 3, 3), we always 

have h(K) > 1. 
(d) The other types of F are treated similarly, and we do not get another 

field with class number one. 
Thus, together with Uchida's result, we get the following table. 
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TABLE 5 

t r Type Degree Fields 

(2*, 2, 2*) 8 (3,5,4);(3,5,7);(3,5,8);(3,8, 1);(3,17,1 1);(4,5,7); (4,13,7);(7,5,8) 
(2*, 2, 3) 12 (3,5,7) 
(2*, 2, 6*) 24 (3,5,7) 
(2*, 2*, 2*) 8 (3,4,7);(3,4,l 1);(3,4,19);(3,7,8);(3,11,19);(4,7,19) 

3 3 2* 2* 3 12 (3,4,7);(3,7,13);(3,8,7);(3,8,13);(3,11,7);(4,7,9); 
(2*, 2*, 3) 12 (4,11,7);(7,8,13) 

(2*, 2*, 4*) 16 (3,4,5);(3,7,5);(3,8,5);(4,7,5) 
(2*, 2*, 5) 20 (3,4,11) 
(2*, 2*, 6*) 24 (3,4,7) 
(2*, 3, 4*) 24 (3,7,5) 

(vi) Next, we treat the case where t = 3 and r = 4. In this case, from Tables 
4 and 5, we always have h(K) > 1. Therefore, if r = t + 1 > 4, then always 
h(K)> 1. 

(vii) Next, we treat the case where t = r = 4. We note that by [29], the 2- 
rank of X is at most three. Therefore, from Table 5, we conclude that K is of 
type (2*, 2*, 2*, 3) and (4X I X21 4X31 fx4) =(3, 4, 11, 7), or (3, 7, 8, 13). 
For the first field, h-(K) = 27 by [25]. For the second field, h-(F) = 39 by 
computer calculation, whence 39 1 h- (K), where F is the sextic subfield of K 
corresponding to (XiX2X3, X4) . 

Thus, if r > 4, then we always have h(K) > 1. 
The determination is now complete. 

APPENDIX. ON UNRAMIFIED-CLOSED ALGEBRAIC NUMBER FIELDS 

In this appendix, we denote by K an algebraic number field of finite degree. 
Put nK = [K: Q] and let r1 (K) (resp. r2(K)) be the number of real (resp. 
imaginary) primes of K. We call K unramified-closed if K does not have 
any nontrivial unramified extension. Here, the unramifiedness refers also to the 
infinite primes. It is well known that Q is unramified-closed as a corollary to 
Minkowski's theorem. We know some other unramified-closed fields (see [10, 
23, 31, Exercise 11.2]). As we review below, if the root discriminant rdK of K 
is sufficiently small, then K is unramified-closed. Here, 

rdK = D lInK 

where DK is the absolute value of the discriminant of K. Many of imaginary 
abelian number fields with class number one are unramified-closed: 

(**) Among the 172 fields, at least 132 fields are unramified-closed, and if 
the Generalized Riemann Hypothesis (GRH) is true, then at least 155 
fields are unramified-closed. 

Now we review the basic idea to get unramified-closed fields. We first note 
that if K is unramified-closed, then the class number h(K) is one. We use 
the following four lemmas and lower estimates for root discriminants due to 
Odlyzko [24]. 
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Lemma 1. Anyfinite group of order less than 60 is solvable. (A5, the alternating 
group of degree five whose order is 60, is nonsolvable.) 

Lemma 2. Let L/K be an extension unramified at allfinite primes. Then rdL= 
rdK. (See, for example, [19].) 

Lemma 3. Let B(n, r1, r2) be the lower boundfor root discriminants of algebraic 
number fields L of degree (> n) such that ri(L)/nL = r1/n (i = 1, 2). If 
h(K) = 1 and rdK < B(6OnK, 60r1 (K), 60r2(K)), then K is unramified-closed. 

Proof. Suppose that K has a nontrivial unramified extension M. Then the 
Galois closure L of M over K is also unramified over K. By Lemma 2, rdL = 

rdK. Since ri(L) = [L: K]ri(K) (i = 1, 2), we have ri(L)/nL = ri(K)/nK . If 
Gal(L/K) is solvable, then K has a nontrivial unramified abelian extension, 
which is contrary to h(K) = 1. Therefore, Gal(L/K) is nonsolvable. Hence, 
by Lemma 1, we have [L: K] = #Gal(L/K) > 60. Thus, this contradicts the 
assumption. Hence, K is unramified-closed. El 

Remark. We also know that if rdK < B(hnK, hr1 (K), hr2(K)), then h(K) < 
h. (See, for example, [31, Lemma 11.23].) Thus, in particular, if rdK < 
B(2nK, 2r1 (K), 2r2(K)) , then K has class number one. This idea is very useful 
for calculation of class numbers. Indeed, it is used together with some algebraic 
technique for calculation of real abelian number fields ([11, 20]). 

Odlyzko gave good lower bounds for B(n, rl, r2) (unconditional and con- 
ditional (under GRH) ones) [24]. (See [1], or [18].) We now give a table of 
lower bounds for B(60n, 0, 30n) which is copied from Diaz y Diaz [1] (un- 
conditional) and Odlyzko [24] (conditional). 

Lower bounds for B(60n, 0, 30n) 

n 60n unconditional under GRH 
2 120 17.05391605 20.221 
4 240 18.81483169 23.575 
6 360 19.59036104 25.332 
8 480 20.04432277 26.485 

10 600 20.34836535 27.328 
12 720 20.56889558 27.984 
14 840 20.73755115 28.515 
16 960 20.87150629 28.961 
18 1080 20.98096539 
20 1200 21.07240885 29.673 
24 1440 21.21725941 

(Conditional lower bounds for B(1080, 0, 540) and B(1440, 0, 720) are not 
given in [24]. But we do not need these values for the confirmation of (**).) 

By Lemma 3, (**) is confirmed by calculating root discriminants.6 For their 
calculation, it is convenient to use the following: 

6We give approximate values of root discriminants of the imaginary abelian number fields with 
class number one below. 
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Lemma 4. Let E and F be algebraic number fields with relatively prime dis- 
criminants, and K the compositefield of E and F. Then rdK = rdErdF . (See, 
for example, [20].) 

Since any imaginary abelian number field with genus number one is a com- 
positum of fields of prime power conductors which are pairwise relatively prime, 
it is easy to calculate its root discriminant. 

We propose the following question: 

"Is any imaginary abelian number field with class number one 
unramified-closed ?" 

Unfortunately, we cannot answer this question only by estimating root dis- 
criminants, because we do not have any means of judging whether or not K 
is unramified-closed when h(K) = 1 and rdK > B(6OnK, 60r1 (K), 60r2(K)). 
Note also that we have the following examples: 

Example 1. The imaginary biquadratic bicyclic number field Q(v'T6, VTY60) 
has class number one. We do not know whether or not this field is unramified- 
closed. Its root discriminant is /67. 163 = 104.5.... 

Example 2 (Martinet [17]). The imaginary cyclic number field Q(cos 2 X, vr 4) 
has an infinite class field tower. The root discriminant of this field is 23/2 .231/2. 

4/5 = 92.368.... 

There exist many real quadratic number fields with class number one having 
nontrivial unramified extension (see [32, 33]). But still unknown is any example 
of such an imaginary abelian number field. We also note that many imaginary 
abelian number fields with small class number do not have an unramified non- 
solvable Galois extension. We have the following example: 

Example 3. The imaginary quadratic number field Q( -4903) has an unram- 
ified extension whose Galois group is isomorphic to A5. Such an extension is 
given as the splitting field of the polynomial X5 + X4 - 3X3 - X2 + 2X - 1 . The 
class number of Q(/-4903) is 27. Its root discriminant is 70.02... . (For 
unramified A,-extensions7 of quadratic number fields, see [32] or [34].) 

We now give the table of imaginary abelian number fields with class num- 
ber one, in which fields are ordered by their degrees and conductors. We use 
the following notations in order to express generators of associated character 
groups. X4 denotes the unique primitive Dirichlet character of conductor 4. 
For odd prime numbers p, Xp denotes a primitive Dirichlet character of con- 
ductor p and order p - 1. For prime powers q = pm ($ 4), Vq denotes an 
even primitive Dirichlet character of conductor q and order pm-l or 2m-2 
according as p is odd or p = 2. In the column UC, the letter Y (resp. (Y)) 
means unramified-closed (resp. unramified-closed under GRH). 

7Galois extensions whose Galois groups are isomorphic to An, the alternating group of 
degree n. 
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Table of the imaginary abelian number fields with class number one 

n Type Generators f rd Simple expression UC 

X3 3 1.73 Q(v/73) Y 
X4 4 2.00 Q(vET) Y 

47 7 2.64 Q(v-) Y 

X4Y'8 8 2.82 Q(v'7-) Y 
2 2* x4 11 3.31 Q(vTiT) Y 

X99 19 4.35 Q(\/zT1) Y 
21 43 6.55 Q( ) Y 

x6373 - -- 67 8.18 Q(vl=67) Y 
81 X813 163 12.76 Q(v/Tf6) y 

X5 5 3.34 Q(C5) Y 

X133 13 6.84 Q( 2(13+2V )) y 

X4YV16 16 6.72 Q(i sin(ir/8)) Y 

4* 7 29 12.49 Q(/-(29 + 2V)) y 

39 37 15.00 Q( -(37 + 6v37)) Y 

x13 53 19.64 Q(V-(53 + 25)) (Y) 

x15 61 21.82 Q( -(61 +6V6i)) (Y) x61 

X4, V8 8 4.00 Q(C8) y 

3 X2 15 3.87 Q(Y/3, v) Y 

4, 2 20 4.47 Q(v/ , vr5) Y 

4 X3, '8 24 4.89 Q(v7-, v) Y 

3, 25 35 5.91 Q(Y, V) 

X4V8, X2 40 6.32 Q(Y ) Y 

X3, 7 - 51 7.14 Q(v/3, v'7) Y 

X4, X 3 52 7.21 Q(v/'T, V3) Y 
(2*, 2) X1l, V8 88 9.38 Q(V- I I, \2) y 

3,46 91 9.53 Q(v/'7, vT) Y 

X32X0 123 11.09 Q(v'=, v'/4) Y 

X4, X 18 148 12.16 Q(\/VT, 7 ) Y 

X41 X8 187 13.67 Q(vZTI, i) Y 

X4Vs, XIg4 232 15.23 Q(v/2, V29) Y 

X34X84 267 16.34 Q(v3, v89) Y 

X7, X61 427 20.66 Q(vr7, _) (Y) 
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n Type Generators f rd Simple expression UC 

X3, X4 12 3.46 Q(W12) Y 

X3, X73 21 4.58 Q (v-3, v/'77) Y 3 

X3 , X4Y8 24 4.89 Q(vZ3, v/Z2) Y 
X4,3 28 5.29 Q(vZT, v=7-) Y 

X3, %X1 33 5.74 Q(V'3, VCT) Y 

X4, 51 44 6.63 Q(v/ZT, v/Tjij) y 

%7,X4 Y8 56 7.48 Q(v/ 7, v/Z2) y 

19 %3,X19 57 7.54 Q(v ,'= ) Y 

X4, %99 76 8.71 Q(VET, VZ) Y 

x7, 451 77 8.77 Q(v/ 7, v/ II) Y 

X4Y'8, 41 88 9.38 Q(vZ2, VZTI) Y 
21 129 11.35 Q(vyN, v/=4) Y X3, X43 

%73 %199 133 11.53 Q(vx/7, vZ1) y 

X4Y'8, X19 152 12.32 Q(v/Z2, vCB) Y 
21 172 13.11 Q(vY , 4 Y X4, X43 

4 (2*, 2*) X3, X33 201 14.17 Q(v/3, v ) Y 

45i 9 209 14.45 Q(v'ZTI, vT Y 

X4, X33 268 16.37 Q(VT, v-7) y 

X73 423 301 17.34 Q(vy 7, v Y 

X4V8, %421 344 18.54 Q( , 
y 
Y 

8 1 489 22.11 Q(v'z, ) (Y) 
X3, X163 Q(i7, -13 

X488, %33 536 23.15 Q(v/T2, V') (Y) 

X4 X 
81 652 25.53 Q(v 1), 9 

515 33 737 27.14 Q(VZTI, v6) ? 

73 8163 1141 33.77 Q(v/7, v 9 

%199 33 1273 35.67 Q(v/CT9, /Z 9) 

%51' %1 1793 42.34 Q( , v v 1 163 ~ ~ ~ (XTT -13 
%21 33 2881 53.67 Q(v/E4, v6) 9 

%9 
81 3097 55.65 Q( , v=6) 9 X19, X163____ Q(/f,-1) 

21 81 709 837 
X43 %X163 7009 83.71 Q(v (43, 9-163) 

33 81 10921 104.50 Q( , v 9 _ _ _ _ _ _ _ _ _ _ X 6 7 , X 163 _ _ _ _ Q ~ ' ~ , 1 1 3 
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n Type Generators f rd Simple expression UC 

X7 7 5.06 Q(C7) Y 
X3 Y9 9 5.19 Q(cs) Y 

6* %13 19 11.63 Y 

73 43 22.97 (Y) 
%11 67 33.24 9 

X3, X 2 21 6.33 Q( , cos(27r/7)) Y 

X4 X72 28 7.31 Q(VT, cos(27r/7)) Y 

X4, y9 36 8.65 Q(V/T, cos(27r/9)) Y 
6 X3, X43 39 9.57 Y 

X4Y8 2 56 10.35 , cos(27r/7)) 

(2* 3) %3I9 63 11.44 Q(V7, cos(27r/9)) Y 
6 76 14.24 Y X4, X19 

5 %2 77 12.13 Q( , cos(27Y/7)) _ 
3 4 

x 73x %43 91 14.62 Y 
X3, X10 93 17.09 Y x31 

X4Y'8, Xj3 104 15.63 Y 

X3, X44 129 21.25 (Y) 

8* X4 Y32 32 14.67 Q(i sin(7r/ 16)) Y 
X41l 41 25.77 (Y) 

(2*, 4) X4, VI16 16 8.00 Q(W16) Y 

X3, V16 48 11.65 Q(v/7, cos(7r/8)) Y 
X3, Xs 15 5.79 QWis) Y 
X4, Xs 20 6.68 Q(C20) Y 
4, X5 35 8.84 Q( 7 C5) Y 

X4 8, Xs 40 9.45 Q(V-2, Cs) Y 

(2*, 4*) X3, X4 VI16 48 11.65 Q(v-, i sin(7r/8)) Y 
8(2*,4) %X4, X3 52 13.69 Y 

8 X7,X13 91 18.11 Y 
94, 148 30.00 ? 

% 5 , X4V16 176 22.31 Q(V/-TI, isin(7r/8)) (Y) 

X4Y'8, 2X9 232 35.34 ? 

Xs, '8 40 9.45 Q(5, V) Y 
X5 X 6 65 12.05 Y 13 W~~~~Q45, Vi 3 

3 2 65 15.30 

| (4* 2) 2X 80 15.04 Q(isin(7r/8), v'5) h 

X5, X87 85 13.78 Q(5, V) Y 

X133' Y8 104 19.36 Y 
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n Type Generators f rd Simple expression UC 

X~~~~~~~~~~ (2*,2,2) X4, 8, %52 40 8.94 Q(8, V) Y 

X4, Y8, X3 24 6.92 Q(W24) Y 

X3 2, %4 60 7.74 QY(12, V) y 

X4, 8 X51 88 13.26 Q(W8, V Y 

23, X5 ,73 105 10.24 Q(Y , V5, Y 
2X120 10X95 Q (V,,V 3 , ) 

(2* 25 2*) X3, X5, X48 120 10.95 Q( I , V ) Y 

(2,2,2) %4,%52%73 140 11.83 Q(V , V5, V/7) Y 

X3, 58 5X1 264 16.24 Q(v,3 ,V 4 ) y 

8 73,, X% W8 280 16.73 Q(v27, v3, v7 ) Y 

6 3 364 19.07 Q(Y 5 -/=7) y X4, X13' X7 QV ,Tv~ 
X3, X87 5%15 561 23.68 Q(v/= , 11) (Y) 

X3, X4, %73 84 9.16 Q(W12, V ) Y 

%3' %4' %151 132 11.48 Q(1, )y 

(2*,2*,2*) X3, %X3, X4W8 168 12.96 Q(\3,7 , v') Y 
X3, X4 ,X199 228 15.09 Q(C12, V19) Y 

3 9 / 19 X4 73X7 X19 532 23.06 Q(vI, v, V ) (Y) 

X3, X1 4 X19 627 25.03 Q('/, 3V'1, vPB) (Y) 
10* Xii 11 8.65 Q(Cl ) Y 

10 (2*,X5) %3~ %12 33 11.79 Q(v/3, cos(27r/11)) Y 

(2__ 5) X4 %X2 44 13.61 Q(VT/=, cos(27r/11)) y 

X13 13 10.49 Q(Wi3) Y 

12* %3 37 27.38 Y) 

%61 61 43.30 ? 

X3 %X7 21 8.76 2Q(12) Y 

X4, X7 28 10.12 Q(28) y 

X4, %X39 36 10.39 Q(W36) Y 

(2* 6*) X4_ 18,X7 56 14.31 Q(V 2,7) y 

7 X3,'9 63 13.74 Q(\/--7,) y 

X4, X9 -76 23.26 (Y) 
12 

X15 X7 77 16.78 Q(T,7) y 

7 
X3 129 39.79 9 

X5, 472 35 12.23 W5, cos(27r/7)) y 

(4*, 3) Xs5, Y9 45 14.464 Q(W5, cos(27r/9)) _ 

X7 2 35 11.31 y 

(6*, 2) X3YV9& 4S 45 11.61 Q(C9, V5) Y 

X3 "9 , t8 72 14.69 Q( , V/-) y 

( 23 X4, 8, 472 56 14.63 ( cos(27/7)) Y 
(2*,2,3) 

2 2 X3, X5 ,X7 105 14.17 Q(v/ 3 5 vt3, cos(27r/7)) Y 
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n Type Generators f rd Simple expression UC 

X3, X4, X2 84 12.67 Q(W12, cos(27r/7)) Y 

X3, X4YV8, X 2 168 17.92 Q(V-3, V-2, cos(27r/7)) Y 
X3, X41, X2 231 21.02 Q(V , VfTI, cos(27r/7)) (Y) 

12 (2*, 2*, 3) X43 X7 1 252 22.89 Q(412 cos(27r/9)) (Y) 

X3, XB,X13 273 25.33 (Y) 
X4 5 41, x2 308 24.27 Q( / /T, vcf, cos(2 7/7)) (Y) 

X3,X%4YI8,X%43 312 27.08 (Y) 

X7 ,X4VY8,X 13 728 41.37 7 

x_ 3 43 32.86 9 

1431X 49 49 32.29 9 

16* X17 17 14.24 Q(C,7) Y 

(2*, 8) X4, Y'32 32 16.00 Q(W32) Y 
(2*, 8*) X3, X4V132 96 25.41 Q(V-3, isin(7r/16)) (Y) 

X5s,X 3 65 22.89 (Y) 

(4*, *) sX5, X4 V16 80 22.49 Q(C5, i sin(7r/8)) (Y) 

16 (2*, 2, 4*) X4,V'8, X5 40 13.37 Q(W40) Y 
X3, X4, X5 60 11.58 Q(C60) Y 

X3( 4* , X5 105 15.32 Q(W15, v7) Y 

,2 , X3, %X4V8, X5 120 16.38 Q(,5, v2) Y 
X4, X7X, X5 140 17.69 Q(W20, V ) Y 

(2*, 4, 2) 2X4,Y/16,X 80 17.88 QQW16, /) Y 

(2*, 4,2*) X4, V16, X3 48 13.85 WQ(48) Y 

18* X19 19 16.13 Q(W19) Y 
18 X3, V'27 27 15.58 Q(W27) Y 

(6* , 3) X3 V9, X2 63 19.01 Q(Cg, cos(27r/7)) Y 

20* X5 '25 25 16.71 Q(W25) Y 

20 (2*, 10*) X3, Xii 33 14.99 Q33) Y 
20 

________ X4,XiI 44 17.30 Q(44) Y 

(2*, 2*, 5) X3, X4, X%2i 132 23.58 Q(W12, cos(27t/1 1)) (Y) 

(4*, 6*) X5, X7 35 16.92 Q(5) Y 
_4_ _6*)_ X5sX3 '9 45 17.37 Q(45) Y 

24 (2*, 2, 6*) X3, X3 , X7 105 19.60 Q(W21, V) Y 

(2*, 2*, 6*) X3, X4, X7 84 17.53 Q(W84) Y 
(2*, 3, 4*) X3, 4, X5 105 21.19 Q(C15, cos(27r/7)) y 
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